\(\int \frac {x^2 (a+b \text {arcsinh}(c x))}{d+c^2 d x^2} \, dx\) [30]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 24, antiderivative size = 108 \[ \int \frac {x^2 (a+b \text {arcsinh}(c x))}{d+c^2 d x^2} \, dx=-\frac {b \sqrt {1+c^2 x^2}}{c^3 d}+\frac {x (a+b \text {arcsinh}(c x))}{c^2 d}-\frac {2 (a+b \text {arcsinh}(c x)) \arctan \left (e^{\text {arcsinh}(c x)}\right )}{c^3 d}+\frac {i b \operatorname {PolyLog}\left (2,-i e^{\text {arcsinh}(c x)}\right )}{c^3 d}-\frac {i b \operatorname {PolyLog}\left (2,i e^{\text {arcsinh}(c x)}\right )}{c^3 d} \]

[Out]

x*(a+b*arcsinh(c*x))/c^2/d-2*(a+b*arcsinh(c*x))*arctan(c*x+(c^2*x^2+1)^(1/2))/c^3/d+I*b*polylog(2,-I*(c*x+(c^2
*x^2+1)^(1/2)))/c^3/d-I*b*polylog(2,I*(c*x+(c^2*x^2+1)^(1/2)))/c^3/d-b*(c^2*x^2+1)^(1/2)/c^3/d

Rubi [A] (verified)

Time = 0.10 (sec) , antiderivative size = 108, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {5812, 5789, 4265, 2317, 2438, 267} \[ \int \frac {x^2 (a+b \text {arcsinh}(c x))}{d+c^2 d x^2} \, dx=-\frac {2 \arctan \left (e^{\text {arcsinh}(c x)}\right ) (a+b \text {arcsinh}(c x))}{c^3 d}+\frac {x (a+b \text {arcsinh}(c x))}{c^2 d}+\frac {i b \operatorname {PolyLog}\left (2,-i e^{\text {arcsinh}(c x)}\right )}{c^3 d}-\frac {i b \operatorname {PolyLog}\left (2,i e^{\text {arcsinh}(c x)}\right )}{c^3 d}-\frac {b \sqrt {c^2 x^2+1}}{c^3 d} \]

[In]

Int[(x^2*(a + b*ArcSinh[c*x]))/(d + c^2*d*x^2),x]

[Out]

-((b*Sqrt[1 + c^2*x^2])/(c^3*d)) + (x*(a + b*ArcSinh[c*x]))/(c^2*d) - (2*(a + b*ArcSinh[c*x])*ArcTan[E^ArcSinh
[c*x]])/(c^3*d) + (I*b*PolyLog[2, (-I)*E^ArcSinh[c*x]])/(c^3*d) - (I*b*PolyLog[2, I*E^ArcSinh[c*x]])/(c^3*d)

Rule 267

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a + b*x^n)^(p + 1)/(b*n*(p + 1)), x] /; FreeQ
[{a, b, m, n, p}, x] && EqQ[m, n - 1] && NeQ[p, -1]

Rule 2317

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2438

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2, (-c)*e*x^n]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 4265

Int[csc[(e_.) + Pi*(k_.) + (Complex[0, fz_])*(f_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[-2*(c +
 d*x)^m*(ArcTanh[E^((-I)*e + f*fz*x)/E^(I*k*Pi)]/(f*fz*I)), x] + (-Dist[d*(m/(f*fz*I)), Int[(c + d*x)^(m - 1)*
Log[1 - E^((-I)*e + f*fz*x)/E^(I*k*Pi)], x], x] + Dist[d*(m/(f*fz*I)), Int[(c + d*x)^(m - 1)*Log[1 + E^((-I)*e
 + f*fz*x)/E^(I*k*Pi)], x], x]) /; FreeQ[{c, d, e, f, fz}, x] && IntegerQ[2*k] && IGtQ[m, 0]

Rule 5789

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)/((d_) + (e_.)*(x_)^2), x_Symbol] :> Dist[1/(c*d), Subst[Int[(a +
 b*x)^n*Sech[x], x], x, ArcSinh[c*x]], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && IGtQ[n, 0]

Rule 5812

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[
f*(f*x)^(m - 1)*(d + e*x^2)^(p + 1)*((a + b*ArcSinh[c*x])^n/(e*(m + 2*p + 1))), x] + (-Dist[f^2*((m - 1)/(c^2*
(m + 2*p + 1))), Int[(f*x)^(m - 2)*(d + e*x^2)^p*(a + b*ArcSinh[c*x])^n, x], x] - Dist[b*f*(n/(c*(m + 2*p + 1)
))*Simp[(d + e*x^2)^p/(1 + c^2*x^2)^p], Int[(f*x)^(m - 1)*(1 + c^2*x^2)^(p + 1/2)*(a + b*ArcSinh[c*x])^(n - 1)
, x], x]) /; FreeQ[{a, b, c, d, e, f, p}, x] && EqQ[e, c^2*d] && GtQ[n, 0] && IGtQ[m, 1] && NeQ[m + 2*p + 1, 0
]

Rubi steps \begin{align*} \text {integral}& = \frac {x (a+b \text {arcsinh}(c x))}{c^2 d}-\frac {\int \frac {a+b \text {arcsinh}(c x)}{d+c^2 d x^2} \, dx}{c^2}-\frac {b \int \frac {x}{\sqrt {1+c^2 x^2}} \, dx}{c d} \\ & = -\frac {b \sqrt {1+c^2 x^2}}{c^3 d}+\frac {x (a+b \text {arcsinh}(c x))}{c^2 d}-\frac {\text {Subst}(\int (a+b x) \text {sech}(x) \, dx,x,\text {arcsinh}(c x))}{c^3 d} \\ & = -\frac {b \sqrt {1+c^2 x^2}}{c^3 d}+\frac {x (a+b \text {arcsinh}(c x))}{c^2 d}-\frac {2 (a+b \text {arcsinh}(c x)) \arctan \left (e^{\text {arcsinh}(c x)}\right )}{c^3 d}+\frac {(i b) \text {Subst}\left (\int \log \left (1-i e^x\right ) \, dx,x,\text {arcsinh}(c x)\right )}{c^3 d}-\frac {(i b) \text {Subst}\left (\int \log \left (1+i e^x\right ) \, dx,x,\text {arcsinh}(c x)\right )}{c^3 d} \\ & = -\frac {b \sqrt {1+c^2 x^2}}{c^3 d}+\frac {x (a+b \text {arcsinh}(c x))}{c^2 d}-\frac {2 (a+b \text {arcsinh}(c x)) \arctan \left (e^{\text {arcsinh}(c x)}\right )}{c^3 d}+\frac {(i b) \text {Subst}\left (\int \frac {\log (1-i x)}{x} \, dx,x,e^{\text {arcsinh}(c x)}\right )}{c^3 d}-\frac {(i b) \text {Subst}\left (\int \frac {\log (1+i x)}{x} \, dx,x,e^{\text {arcsinh}(c x)}\right )}{c^3 d} \\ & = -\frac {b \sqrt {1+c^2 x^2}}{c^3 d}+\frac {x (a+b \text {arcsinh}(c x))}{c^2 d}-\frac {2 (a+b \text {arcsinh}(c x)) \arctan \left (e^{\text {arcsinh}(c x)}\right )}{c^3 d}+\frac {i b \operatorname {PolyLog}\left (2,-i e^{\text {arcsinh}(c x)}\right )}{c^3 d}-\frac {i b \operatorname {PolyLog}\left (2,i e^{\text {arcsinh}(c x)}\right )}{c^3 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.17 (sec) , antiderivative size = 121, normalized size of antiderivative = 1.12 \[ \int \frac {x^2 (a+b \text {arcsinh}(c x))}{d+c^2 d x^2} \, dx=\frac {a c x-b \sqrt {1+c^2 x^2}+b c x \text {arcsinh}(c x)-a \arctan (c x)-i b \text {arcsinh}(c x) \log \left (1-i e^{\text {arcsinh}(c x)}\right )+i b \text {arcsinh}(c x) \log \left (1+i e^{\text {arcsinh}(c x)}\right )+i b \operatorname {PolyLog}\left (2,-i e^{\text {arcsinh}(c x)}\right )-i b \operatorname {PolyLog}\left (2,i e^{\text {arcsinh}(c x)}\right )}{c^3 d} \]

[In]

Integrate[(x^2*(a + b*ArcSinh[c*x]))/(d + c^2*d*x^2),x]

[Out]

(a*c*x - b*Sqrt[1 + c^2*x^2] + b*c*x*ArcSinh[c*x] - a*ArcTan[c*x] - I*b*ArcSinh[c*x]*Log[1 - I*E^ArcSinh[c*x]]
 + I*b*ArcSinh[c*x]*Log[1 + I*E^ArcSinh[c*x]] + I*b*PolyLog[2, (-I)*E^ArcSinh[c*x]] - I*b*PolyLog[2, I*E^ArcSi
nh[c*x]])/(c^3*d)

Maple [A] (verified)

Time = 0.17 (sec) , antiderivative size = 170, normalized size of antiderivative = 1.57

method result size
derivativedivides \(\frac {\frac {a \left (c x -\arctan \left (c x \right )\right )}{d}+\frac {b \left (-\operatorname {arcsinh}\left (c x \right ) \arctan \left (c x \right )+\operatorname {arcsinh}\left (c x \right ) c x -\sqrt {c^{2} x^{2}+1}-\arctan \left (c x \right ) \ln \left (1+\frac {i \left (i c x +1\right )}{\sqrt {c^{2} x^{2}+1}}\right )+\arctan \left (c x \right ) \ln \left (1-\frac {i \left (i c x +1\right )}{\sqrt {c^{2} x^{2}+1}}\right )+i \operatorname {dilog}\left (1+\frac {i \left (i c x +1\right )}{\sqrt {c^{2} x^{2}+1}}\right )-i \operatorname {dilog}\left (1-\frac {i \left (i c x +1\right )}{\sqrt {c^{2} x^{2}+1}}\right )\right )}{d}}{c^{3}}\) \(170\)
default \(\frac {\frac {a \left (c x -\arctan \left (c x \right )\right )}{d}+\frac {b \left (-\operatorname {arcsinh}\left (c x \right ) \arctan \left (c x \right )+\operatorname {arcsinh}\left (c x \right ) c x -\sqrt {c^{2} x^{2}+1}-\arctan \left (c x \right ) \ln \left (1+\frac {i \left (i c x +1\right )}{\sqrt {c^{2} x^{2}+1}}\right )+\arctan \left (c x \right ) \ln \left (1-\frac {i \left (i c x +1\right )}{\sqrt {c^{2} x^{2}+1}}\right )+i \operatorname {dilog}\left (1+\frac {i \left (i c x +1\right )}{\sqrt {c^{2} x^{2}+1}}\right )-i \operatorname {dilog}\left (1-\frac {i \left (i c x +1\right )}{\sqrt {c^{2} x^{2}+1}}\right )\right )}{d}}{c^{3}}\) \(170\)
parts \(\frac {a \left (\frac {x}{c^{2}}-\frac {\arctan \left (c x \right )}{c^{3}}\right )}{d}+\frac {b \left (-\operatorname {arcsinh}\left (c x \right ) \arctan \left (c x \right )+\operatorname {arcsinh}\left (c x \right ) c x -\sqrt {c^{2} x^{2}+1}-\arctan \left (c x \right ) \ln \left (1+\frac {i \left (i c x +1\right )}{\sqrt {c^{2} x^{2}+1}}\right )+\arctan \left (c x \right ) \ln \left (1-\frac {i \left (i c x +1\right )}{\sqrt {c^{2} x^{2}+1}}\right )+i \operatorname {dilog}\left (1+\frac {i \left (i c x +1\right )}{\sqrt {c^{2} x^{2}+1}}\right )-i \operatorname {dilog}\left (1-\frac {i \left (i c x +1\right )}{\sqrt {c^{2} x^{2}+1}}\right )\right )}{d \,c^{3}}\) \(174\)

[In]

int(x^2*(a+b*arcsinh(c*x))/(c^2*d*x^2+d),x,method=_RETURNVERBOSE)

[Out]

1/c^3*(a/d*(c*x-arctan(c*x))+b/d*(-arcsinh(c*x)*arctan(c*x)+arcsinh(c*x)*c*x-(c^2*x^2+1)^(1/2)-arctan(c*x)*ln(
1+I*(1+I*c*x)/(c^2*x^2+1)^(1/2))+arctan(c*x)*ln(1-I*(1+I*c*x)/(c^2*x^2+1)^(1/2))+I*dilog(1+I*(1+I*c*x)/(c^2*x^
2+1)^(1/2))-I*dilog(1-I*(1+I*c*x)/(c^2*x^2+1)^(1/2))))

Fricas [F]

\[ \int \frac {x^2 (a+b \text {arcsinh}(c x))}{d+c^2 d x^2} \, dx=\int { \frac {{\left (b \operatorname {arsinh}\left (c x\right ) + a\right )} x^{2}}{c^{2} d x^{2} + d} \,d x } \]

[In]

integrate(x^2*(a+b*arcsinh(c*x))/(c^2*d*x^2+d),x, algorithm="fricas")

[Out]

integral((b*x^2*arcsinh(c*x) + a*x^2)/(c^2*d*x^2 + d), x)

Sympy [F]

\[ \int \frac {x^2 (a+b \text {arcsinh}(c x))}{d+c^2 d x^2} \, dx=\frac {\int \frac {a x^{2}}{c^{2} x^{2} + 1}\, dx + \int \frac {b x^{2} \operatorname {asinh}{\left (c x \right )}}{c^{2} x^{2} + 1}\, dx}{d} \]

[In]

integrate(x**2*(a+b*asinh(c*x))/(c**2*d*x**2+d),x)

[Out]

(Integral(a*x**2/(c**2*x**2 + 1), x) + Integral(b*x**2*asinh(c*x)/(c**2*x**2 + 1), x))/d

Maxima [F]

\[ \int \frac {x^2 (a+b \text {arcsinh}(c x))}{d+c^2 d x^2} \, dx=\int { \frac {{\left (b \operatorname {arsinh}\left (c x\right ) + a\right )} x^{2}}{c^{2} d x^{2} + d} \,d x } \]

[In]

integrate(x^2*(a+b*arcsinh(c*x))/(c^2*d*x^2+d),x, algorithm="maxima")

[Out]

a*(x/(c^2*d) - arctan(c*x)/(c^3*d)) + b*integrate(x^2*log(c*x + sqrt(c^2*x^2 + 1))/(c^2*d*x^2 + d), x)

Giac [F]

\[ \int \frac {x^2 (a+b \text {arcsinh}(c x))}{d+c^2 d x^2} \, dx=\int { \frac {{\left (b \operatorname {arsinh}\left (c x\right ) + a\right )} x^{2}}{c^{2} d x^{2} + d} \,d x } \]

[In]

integrate(x^2*(a+b*arcsinh(c*x))/(c^2*d*x^2+d),x, algorithm="giac")

[Out]

integrate((b*arcsinh(c*x) + a)*x^2/(c^2*d*x^2 + d), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {x^2 (a+b \text {arcsinh}(c x))}{d+c^2 d x^2} \, dx=\int \frac {x^2\,\left (a+b\,\mathrm {asinh}\left (c\,x\right )\right )}{d\,c^2\,x^2+d} \,d x \]

[In]

int((x^2*(a + b*asinh(c*x)))/(d + c^2*d*x^2),x)

[Out]

int((x^2*(a + b*asinh(c*x)))/(d + c^2*d*x^2), x)